Search Filtering Operations

L3
ModelContextProtocolPlaywrightShopping Admin

Configure advanced search and filtering systems in admin interface, implement category hierarchies, set up attribute filters, and optimize search algorithms for user experience.

Created by Fanqing Meng
2025-08-17
Content Submission

Model Ranking

Click on the dots to view the trajectory of each task run
Model
Run Results
Pass@4
Pass^4
Avg Time
Avg Turns
Input Tokens
Output Tokens
Total Tokens
MoonshotAI
kimi-k2-0905
4
/4
323.0s
35.3
1,314,554
2,408
1,316,962
Claude
claude-sonnet-4
3
/4
344.3s
32.8
1,411,178
5,025
1,416,203
OpenAI
gpt-5-high
3
/4
2400.7s
45.8
2,187,518
111,266
2,298,783
Grok
grok-code-fast-1
3
/4
126.0s
21.3
849,007
7,036
856,043
Qwen
qwen-3-coder-plus
3
/4
251.3s
39.0
1,805,985
3,613
1,809,598
OpenAI
gpt-5-mini-high
2
/4
152.5s
12.3
177,245
15,503
192,748
OpenAI
o4-mini
2
/4
244.3s
8.8
91,833
14,865
106,697
DeepSeek
deepseek-chat
1
/4
536.6s
34.0
1,626,447
3,271
1,629,718
Gemini
gemini-2-5-pro
1
/4
115.0s
15.5
577,350
3,833
581,183
Z.ai
glm-4-5
1
/4
238.5s
32.8
1,269,371
3,278
1,272,648
OpenAI
gpt-5-low
1
/4
867.4s
31.0
1,010,563
41,124
1,051,688
OpenAI
gpt-5-medium
1
/4
854.2s
27.3
797,482
44,352
841,833
Grok
grok-4
1
/4
205.3s
24.8
829,883
5,372
835,255
OpenAI
o3
1
/4
180.3s
13.3
219,271
7,256
226,526
Claude
claude-opus-4-1
0
/1
--
633.7s
40.0
1,615,670
4,381
1,620,051
Claude
claude-sonnet-4-high
0
/4
255.0s
32.8
1,310,947
4,593
1,315,540
Claude
claude-sonnet-4-low
0
/4
241.1s
29.3
1,197,547
4,630
1,202,177
Gemini
gemini-2-5-flash
0
/4
100.6s
19.3
533,013
6,308
539,321
OpenAI
gpt-4-1
0
/4
50.8s
11.5
86,481
645
87,127
OpenAI
gpt-4-1-mini
0
/4
104.7s
37.0
505,759
2,475
508,234
OpenAI
gpt-4-1-nano
0
/4
35.5s
12.5
98,327
645
98,972
OpenAI
gpt-5-mini-low
0
/4
43.8s
7.3
48,241
1,842
50,083
OpenAI
gpt-5-mini-medium
0
/4
66.0s
8.8
84,941
4,703
89,643
OpenAI
gpt-5-nano-high
0
/4
172.1s
18.5
404,167
28,272
432,439
OpenAI
gpt-5-nano-low
0
/4
61.6s
6.5
97,809
8,314
106,123
OpenAI
gpt-5-nano-medium
0
/4
96.2s
15.5
243,466
13,548
257,013
OpenAI
gpt-oss-120b
0
/4
67.1s
13.0
199,447
3,760
203,207
MoonshotAI
kimi-k2-0711
0
/4
299.8s
36.0
1,353,271
2,102
1,355,373
Qwen
qwen-3-max
0
/4
892.9s
71.8
6,871,781
2,085
6,873,866

Task State

WebArena
view WebArena environment setup for this task

Instruction

Perform comprehensive search and filtering operations in the Magento Admin panel to extract specific business insights using advanced search techniques.

Task Requirements:

  1. Login with username 'admin' and password 'admin1234'

  2. To analyze search behavior and term effectiveness, check the Search Terms of Marketing and perform complex filtering:

    • Search for all terms containing 'tank' in their name - count the exact number of results
    • Clear filters and find terms with exactly 0 results - count how many such terms exist
    • Apply a filter to show only terms with more than 10 uses - record the term with highest uses and its count (You need to see how many there are and record them all.)
    • Find the search term that has results between 20-30 - record its name and exact result count
  3. To gather detailed marketing insights from search data, go to Search Terms in Reports:

    • Apply filter for terms with more than 15 hits - count total filtered results
    • Find the term with ID between 10-15 that has the most results - record term name and result count (You need to see how many there are and record them all.)
    • Filter to show only terms from "Default Store View" - count total results
  4. To examine real-time search trends and top performers, from the Dashboard, perform targeted searches:

    • In the 'Top Search Terms' table, find the term with exactly 1 result - record its name and uses
    • In the 'Last Search Terms' table, identify the term with the both the highest number of results and uses - record name and the number of results
    • In the 'Bestsellers' tab, find the product at position #3 - record name and quantity
  5. To identify patterns in search usage and results, navigate to Search Terms (main grid) in step 2:

    • Sort by 'Uses' column (descending) - record the top term and its uses count
    • Sort by 'Results' column (ascending) - record the first non-zero result term and its count
    • Count total number of unique search terms in the system
  6. To provide a comprehensive report of all gathered data, compile all findings and output in the following exact format:

Plaintext
<answer>
TankSearchCount|count
ZeroResultsCount|count
HighestUseTerm|term:uses
Results20to30Term|term1:results1|term2:result2|term3:result3|...
Hits15PlusCount|count
ID10to15MaxResults|term:results
DefaultStoreViewCount|count
OneResultTerm|term1:uses1|term2:uses2|term3:uses3|...
HighestResultLastSearch|term:results
Position3Bestseller|product:quantity
TopUseTerm|term:uses
FirstNonZeroResult|term:results
TotalUniqueTerms|count
</answer>

Example Output:

Plaintext
<answer>
TankSearchCount|X
ZeroResultsCount|X
HighestUseTerm|search_term:XX
Results20to30Term|search_term1:XX1|search_term2:XX2|search_term3:XX3|...
Hits15PlusCount|X
ID10to15MaxResults|Product Name:XX
DefaultStoreViewCount|X
OneResultTerm|search_term1:XX1|search_term2:XX2|search_term3:XX3|...
HighestResultLastSearch|search_term:XX
Position3Bestseller|Product Name:X
TopUseTerm|search_term:XX
FirstNonZeroResult|search_term:X
TotalUniqueTerms|X
</answer>

Success Criteria:

  • Successfully logged into Magento Admin
  • Applied complex search filters in Search Terms section
  • Used range filters for results and hits
  • Sorted columns to find specific records
  • Navigated between different report views
  • Extracted data from filtered and sorted results
  • Counted records accurately after applying filters
  • Output answer in exact format with 13 data lines
  • Answer wrapped in <answer> tags


Verify

*.py
Python
import re
import json
import os
import sys


def verify(messages):
    """
    Verify that the agent has successfully performed complex search and filtering operations
    in the Magento Admin panel and extracted all required information correctly.

    Args:
        messages: List of message dictionaries containing the conversation

    Returns:
        Dictionary with 'valid' boolean and 'reason' string
    """

    # Find the last assistant message with status "completed" and type "message"
    answer_content = None
    for message in reversed(messages):
        if (
            message.get("role") == "assistant"
            and message.get("status") == "completed"
            and message.get("type") == "message"
            and message.get("content")
        ):
            # Extract text from content structure
            content = message["content"]
            if isinstance(content, list):
                for item in content:
                    if isinstance(item, dict) and item.get("type") == "output_text":
                        text = item.get("text", "")
                        # Look for answer tags with case-insensitive search
                        answer_match = re.search(
                            r"<answer>(.*?)</answer>", text, re.DOTALL | re.IGNORECASE
                        )
                        if answer_match:
                            answer_content = answer_match.group(1).strip()
                            break
            elif isinstance(content, str):
                # Look for answer tags in string content
                answer_match = re.search(r"<answer>(.*?)</answer>", content, re.DOTALL | re.IGNORECASE)
                if answer_match:
                    answer_content = answer_match.group(1).strip()
                    break

            if answer_content:
                break

    if not answer_content:
        return {"valid": False, "reason": "No answer found in <answer> tags"}

    # Expected format - each line should have a key|value pair
    expected_keys = [
        "TankSearchCount",
        "ZeroResultsCount",
        "HighestUseTerm",
        "Results20to30Term",
        "Hits15PlusCount",
        "ID10to15MaxResults",
        "DefaultStoreViewCount",
        "OneResultTerm",
        "HighestResultLastSearch",
        "Position3Bestseller",
        "TopUseTerm",
        "FirstNonZeroResult",
        "TotalUniqueTerms",
    ]

    # Parse the answer
    lines = answer_content.strip().split("\n")

    # Check if we have exactly 13 lines
    if len(lines) != 13:
        return {"valid": False, "reason": f"Expected 13 data lines, found {len(lines)}"}

    # Parse each line and validate format
    extracted_data = {}
    for line in lines:
        if "|" not in line:
            return {
                "valid": False,
                "reason": f"Invalid format in line: {line}. Expected 'key|value' format",
            }

        parts = line.split("|", 1)
        if len(parts) != 2:
            return {"valid": False, "reason": f"Invalid format in line: {line}"}

        key, value = parts
        extracted_data[key] = value

    # Check all required keys are present
    missing_keys = set(expected_keys) - set(extracted_data.keys())
    if missing_keys:
        return {
            "valid": False,
            "reason": f"Missing required keys: {', '.join(missing_keys)}",
        }

    # Validate specific data formats and expected values based on the current data

    # 1. TankSearchCount should be a number (2 terms containing 'tank')
    if not extracted_data["TankSearchCount"].isdigit():
        return {
            "valid": False,
            "reason": f"TankSearchCount should be a number, got: {extracted_data['TankSearchCount']}",
        }

    # Expected: "Antonia Racer Tank" and "tanks" contain 'tank'
    if extracted_data["TankSearchCount"] != "2":
        return {
            "valid": False,
            "reason": f"TankSearchCount should be '2', got: {extracted_data['TankSearchCount']}",
        }

    # 2. ZeroResultsCount should be a number (nike has 0 results)
    if not extracted_data["ZeroResultsCount"].isdigit():
        return {
            "valid": False,
            "reason": f"ZeroResultsCount should be a number, got: {extracted_data['ZeroResultsCount']}",
        }

    if extracted_data["ZeroResultsCount"] != "1":
        return {
            "valid": False,
            "reason": f"ZeroResultsCount should be '1', got: {extracted_data['ZeroResultsCount']}",
        }

    # 3. HighestUseTerm should be in format "term:uses"
    if ":" not in extracted_data["HighestUseTerm"]:
        return {
            "valid": False,
            "reason": f"HighestUseTerm should be in format 'term:uses', got: {extracted_data['HighestUseTerm']}",
        }

    # hollister has 19 uses (highest among terms with > 10 uses)
    if extracted_data["HighestUseTerm"] != "hollister:19":
        return {
            "valid": False,
            "reason": f"HighestUseTerm should be 'hollister:19', got: {extracted_data['HighestUseTerm']}",
        }

    # 4. Results20to30Term should be in format "term:results"
    if ":" not in extracted_data["Results20to30Term"]:
        return {
            "valid": False,
            "reason": f"Results20to30Term should be in format 'term:results', got: {extracted_data['Results20to30Term']}",
        }

    # Both "tanks" and "Antonia Racer Tank" have 23 results (between 20-30)
    valid_results20to30 = ["tanks:23", "Antonia Racer Tank:23"]
    # Check if answer contains one of the valid values or both separated by |
    if not any(
        val in extracted_data["Results20to30Term"] for val in valid_results20to30
    ):
        return {
            "valid": False,
            "reason": f"Results20to30Term should contain 'tanks:23' or 'Antonia Racer Tank:23', got: {extracted_data['Results20to30Term']}",
        }

    # 5. Hits15PlusCount should be a number (only hollister has 19 hits > 15)
    if not extracted_data["Hits15PlusCount"].isdigit():
        return {
            "valid": False,
            "reason": f"Hits15PlusCount should be a number, got: {extracted_data['Hits15PlusCount']}",
        }

    if extracted_data["Hits15PlusCount"] != "1":
        return {
            "valid": False,
            "reason": f"Hits15PlusCount should be '1', got: {extracted_data['Hits15PlusCount']}",
        }

    # 6. ID10to15MaxResults should be in format "term:results"
    if ":" not in extracted_data["ID10to15MaxResults"]:
        return {
            "valid": False,
            "reason": f"ID10to15MaxResults should be in format 'term:results', got: {extracted_data['ID10to15MaxResults']}",
        }

    # ID 11 is hollister (1 result), ID 13 is Antonia Racer Tank (23 results)
    if extracted_data["ID10to15MaxResults"] != "Antonia Racer Tank:23":
        return {
            "valid": False,
            "reason": f"ID10to15MaxResults should be 'Antonia Racer Tank:23', got: {extracted_data['ID10to15MaxResults']}",
        }

    # 7. DefaultStoreViewCount should be a number (all 7 terms are from Default Store View)
    if not extracted_data["DefaultStoreViewCount"].isdigit():
        return {
            "valid": False,
            "reason": f"DefaultStoreViewCount should be a number, got: {extracted_data['DefaultStoreViewCount']}",
        }

    if extracted_data["DefaultStoreViewCount"] != "7":
        return {
            "valid": False,
            "reason": f"DefaultStoreViewCount should be '7', got: {extracted_data['DefaultStoreViewCount']}",
        }

    # 8. OneResultTerm should be in format "term:uses"
    if ":" not in extracted_data["OneResultTerm"]:
        return {
            "valid": False,
            "reason": f"OneResultTerm should be in format 'term:uses', got: {extracted_data['OneResultTerm']}",
        }

    # Both hollister and WP10 have exactly 1 result
    valid_one_result = ["hollister:19", "WP10:1"]
    if not any(val in extracted_data["OneResultTerm"] for val in valid_one_result):
        return {
            "valid": False,
            "reason": f"OneResultTerm should contain 'hollister:19' or 'WP10:1', got: {extracted_data['OneResultTerm']}",
        }

    # 9. HighestResultLastSearch should be in format "term:results"
    if ":" not in extracted_data["HighestResultLastSearch"]:
        return {
            "valid": False,
            "reason": f"HighestResultLastSearch should be in format 'term:results', got: {extracted_data['HighestResultLastSearch']}",
        }

    # In Last Search Terms: tanks and Antonia Racer Tank both have 23 results (highest)
    valid_highest_last = ["tanks:23", "Antonia Racer Tank:23"]
    if not any(
        val in extracted_data["HighestResultLastSearch"] for val in valid_highest_last
    ):
        return {
            "valid": False,
            "reason": f"HighestResultLastSearch should contain 'tanks:23' or 'Antonia Racer Tank:23', got: {extracted_data['HighestResultLastSearch']}",
        }

    # 10. Position3Bestseller should be in format "product:quantity"
    if ":" not in extracted_data["Position3Bestseller"]:
        return {
            "valid": False,
            "reason": f"Position3Bestseller should be in format 'product:quantity', got: {extracted_data['Position3Bestseller']}",
        }

    # Position 3 in Bestsellers is "Sprite Stasis Ball 65 cm" with quantity 6
    if extracted_data["Position3Bestseller"] != "Sprite Stasis Ball 65 cm:6":
        return {
            "valid": False,
            "reason": f"Position3Bestseller should be 'Sprite Stasis Ball 65 cm:6', got: {extracted_data['Position3Bestseller']}",
        }

    # 11. TopUseTerm should be in format "term:uses"
    if ":" not in extracted_data["TopUseTerm"]:
        return {
            "valid": False,
            "reason": f"TopUseTerm should be in format 'term:uses', got: {extracted_data['TopUseTerm']}",
        }

    # hollister has 19 uses (highest)
    if extracted_data["TopUseTerm"] != "hollister:19":
        return {
            "valid": False,
            "reason": f"TopUseTerm should be 'hollister:19', got: {extracted_data['TopUseTerm']}",
        }

    # 12. FirstNonZeroResult should be in format "term:results"
    if ":" not in extracted_data["FirstNonZeroResult"]:
        return {
            "valid": False,
            "reason": f"FirstNonZeroResult should be in format 'term:results', got: {extracted_data['FirstNonZeroResult']}",
        }

    # When sorted by results ascending, first non-zero is WP10 (has 1 result)
    if extracted_data["FirstNonZeroResult"] != "WP10:1":
        return {
            "valid": False,
            "reason": f"FirstNonZeroResult should be 'WP10:1', got: {extracted_data['FirstNonZeroResult']}",
        }

    # 13. TotalUniqueTerms should be a number
    if not extracted_data["TotalUniqueTerms"].isdigit():
        return {
            "valid": False,
            "reason": f"TotalUniqueTerms should be a number, got: {extracted_data['TotalUniqueTerms']}",
        }

    # There are 7 unique search terms in the system
    if extracted_data["TotalUniqueTerms"] != "7":
        return {
            "valid": False,
            "reason": f"TotalUniqueTerms should be '7', got: {extracted_data['TotalUniqueTerms']}",
        }

    # All validations passed
    return {
        "valid": True,
        "reason": "All complex search and filtering operations completed successfully",
    }


if __name__ == "__main__":
    # Load messages from environment variable
    messages_path = os.getenv("MCP_MESSAGES")
    if not messages_path:
        print(
            json.dumps(
                {"valid": False, "reason": "MCP_MESSAGES environment variable not set"}
            )
        )
        exit(1)

    try:
        with open(messages_path, "r") as f:
            messages = json.load(f)
    except Exception as e:
        print(
            json.dumps({"valid": False, "reason": f"Failed to load messages: {str(e)}"})
        )
        exit(1)

    # Run verification
    result = verify(messages)
    print(json.dumps(result))
    # Exit with appropriate code based on verification result
    sys.exit(0 if result["valid"] else 1)