LLM Research Summary
L3
PlaywrightReddit
Aggregate and analyze LLM research discussions across multiple forums, collect trending topics, compile technical insights, and create comprehensive summary post with community engagement.
Created by Fanqing Meng
2025-08-12
Data ExtractionSearch AggregationContent SubmissionUser Interaction
Model Ranking
Click on the dots to view the trajectory of each task run
Model | Run Results | Pass@4 | Pass^4 | Avg Time | Avg Turns | Input Tokens | Output Tokens | Total Tokens |
---|---|---|---|---|---|---|---|---|
claude-4-sonnet | 2 /4 | 324.8s | 20.0 | 1,066,641 | 4,538 | 1,071,180 | ||
qwen-3-coder | 1 /4 | 255.5s | 19.8 | 1,276,837 | 3,020 | 1,279,857 | ||
claude-4-1-opus | 0 /1 | - | - | 403.9s | 20.0 | 984,735 | 3,636 | 988,371 |
deepseek-chat | 0 /4 | 312.5s | 19.0 | 857,672 | 2,588 | 860,260 | ||
gemini-2-5-pro | 0 /4 | 350.8s | 21.8 | 1,336,379 | 9,754 | 1,346,133 | ||
gpt-5 | 0 /4 | 524.1s | 17.3 | 592,551 | 22,608 | 615,160 | ||
grok-4 | 0 /4 | 65.1s | 5.8 | - | - | - | ||
k2 | 0 /4 | 235.5s | 20.5 | 859,018 | 2,252 | 861,270 | ||
o3 | 0 /4 | 202.1s | 15.8 | 478,381 | 8,293 | 486,674 |
Task State
Instruction
Verify
Python
import asyncio
import sys
import re
import os
from pathlib import Path
from playwright.async_api import (
async_playwright,
TimeoutError as PlaywrightTimeoutError,
)
# 从环境变量读取 base_url,默认回退到本地
BASE_URL = os.getenv("WEBARENA_BASE_URL", "http://localhost:9999").rstrip("/")
def parse_key_value_format(text):
"""
Parse the Key|Value format from the submission body.
Handles both pipe (|) and colon (:) separators for compatibility.
"""
data = {}
# Try to parse with pipe separator first (expected format)
lines = text.strip().split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Remove markdown list prefix if present
if line.startswith('- '):
line = line[2:]
elif line.startswith('* '):
line = line[2:]
# Try pipe separator first
if '|' in line:
parts = line.split('|', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
data[key] = value
# Fallback to colon separator for label.txt compatibility
elif ':' in line:
parts = line.split(':', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
data[key] = value
return data
def normalize_text(text):
"""
Normalize text for comparison by handling different quote styles and whitespace.
"""
if not isinstance(text, str):
return str(text)
# Replace various quote styles with standard quotes
text = text.replace(""", "'").replace(""", "'")
text = text.replace('"', '"').replace('"', '"')
# Normalize whitespace
text = " ".join(text.split())
return text.strip()
async def verify() -> bool:
"""
Verifies that the LLM analysis task has been completed correctly.
"""
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
context = await browser.new_context()
page = await context.new_page()
try:
# Navigate to the main page
print("Navigating to forum...", file=sys.stderr)
await page.goto(f"{BASE_URL}/", wait_until="networkidle")
# Check if logged in as llm_analyst_2024
user_button = page.locator('button:has-text("llm_analyst_2024")')
if not await user_button.count():
# Try to login
print("Not logged in, attempting to login...", file=sys.stderr)
await page.click('a:has-text("Log in")')
await page.wait_for_load_state("networkidle")
await page.fill('input[name="_username"]', "llm_analyst_2024")
await page.fill('input[name="_password"]', "LLMExpert2024!")
await page.click('button:has-text("Log in")')
await page.wait_for_load_state("networkidle")
user_button = page.locator('button:has-text("llm_analyst_2024")')
if not await user_button.count():
print("Error: Login failed for llm_analyst_2024", file=sys.stderr)
return False
print("Successfully logged in as llm_analyst_2024", file=sys.stderr)
else:
print("Already logged in as llm_analyst_2024", file=sys.stderr)
# Navigate to MachineLearning forum
print("Navigating to MachineLearning forum...", file=sys.stderr)
await page.goto(
f"{BASE_URL}/f/MachineLearning", wait_until="networkidle"
)
# Look for the submission with our specific title
print(
"Looking for submission 'LLM Research Summary: GPT Discussions Analysis [2024]'...",
file=sys.stderr,
)
post_link = page.locator(
'a:has-text("LLM Research Summary: GPT Discussions Analysis [2024]")'
)
if not await post_link.count():
print(
"Error: Could not find submission with required title",
file=sys.stderr,
)
return False
# Click on the submission to view its content
await post_link.first.click()
await page.wait_for_load_state("networkidle")
# Extract the submission body content
# Try multiple possible selectors for the post body
post_content = None
selectors = [
".submission__body",
".post-body",
".RichText",
'[class*="RichText"]',
'div:has(> p:has-text("Total_LLM_Posts"))',
'div:has-text("Total_LLM_Posts"):has-text("Deeplearning_Comments")',
]
for selector in selectors:
content_element = page.locator(selector)
if await content_element.count():
post_content = await content_element.first.inner_text()
if "Total_LLM_Posts" in post_content:
print(
f"Found submission content using selector: {selector}",
file=sys.stderr,
)
break
if not post_content or "Total_LLM_Posts" not in post_content:
print(
"Error: Could not find submission body with required format",
file=sys.stderr,
)
return False
print("Submission content found, parsing data...", file=sys.stderr)
print(f"Raw content: {post_content[:200]}...", file=sys.stderr)
# Parse the Key: Value format
extracted_data = parse_key_value_format(post_content)
print(f"Extracted data: {extracted_data}", file=sys.stderr)
# Load expected values from label.txt
label_path = Path(__file__).parent / "label.txt"
if label_path.exists():
with open(label_path, "r") as f:
expected_text = f.read().strip()
expected_data = parse_key_value_format(expected_text)
print("Loaded expected values from label.txt", file=sys.stderr)
# Verify all required keys are present
required_keys = [
"Total_LLM_Posts",
"Top1_Title",
"Top1_Upvotes",
"Top1_Date",
"Top2_Title",
"Top2_Upvotes",
"Top2_Date",
"Top3_Title",
"Top3_Upvotes",
"Top3_Date",
"Deeplearning_MostDiscussed",
"Deeplearning_Comments",
]
missing_keys = []
for key in required_keys:
if key not in extracted_data:
missing_keys.append(key)
if missing_keys:
print(
f"Error: Missing required keys: {', '.join(missing_keys)}",
file=sys.stderr,
)
return False
# Validate data format and content
errors = []
# Check Total_LLM_Posts is a number and matches expected
try:
total_posts = int(extracted_data["Total_LLM_Posts"])
if "expected_data" in locals() and "Total_LLM_Posts" in expected_data:
expected_total = int(expected_data["Total_LLM_Posts"])
if total_posts != expected_total:
errors.append(
f"Total_LLM_Posts mismatch: got {total_posts}, expected {expected_total}"
)
elif total_posts < 5: # Based on exploration, should be at least 5
errors.append(f"Total_LLM_Posts seems too low: {total_posts}")
except ValueError:
errors.append(
f"Total_LLM_Posts must be a number, got: {extracted_data['Total_LLM_Posts']}"
)
# If we have expected data, compare against it
if "expected_data" in locals():
# Compare each field
for key in required_keys:
if key in expected_data and key in extracted_data:
expected_val = normalize_text(expected_data[key])
actual_val = normalize_text(extracted_data[key])
# For numeric fields, compare as integers
if (
"Upvotes" in key
or "Comments" in key
or key == "Total_LLM_Posts"
):
try:
expected_int = int(expected_val)
actual_int = int(actual_val)
if expected_int != actual_int:
errors.append(
f"{key} mismatch: got {actual_int}, expected {expected_int}"
)
except ValueError:
errors.append(
f"{key} should be numeric: got '{actual_val}'"
)
else:
# For text fields, compare normalized text
if expected_val != actual_val:
errors.append(
f"{key} mismatch: got '{actual_val}', expected '{expected_val}'"
)
else:
# If no expected data, just do basic validation
for key in required_keys:
if key not in extracted_data:
errors.append(f"Missing required key: {key}")
elif (
not extracted_data[key] or extracted_data[key] == "[FILL_VALUE]"
):
errors.append(f"{key} was not filled in")
# Verify upvotes are in descending order for top 3
try:
top1_votes = int(extracted_data["Top1_Upvotes"])
top2_votes = int(extracted_data["Top2_Upvotes"])
top3_votes = int(extracted_data["Top3_Upvotes"])
if not (top1_votes >= top2_votes >= top3_votes):
errors.append(
f"Top posts should be ordered by upvotes: {top1_votes} >= {top2_votes} >= {top3_votes}"
)
except (ValueError, KeyError):
pass # Already reported above
if errors:
print(
"Error: Validation failed with the following issues:",
file=sys.stderr,
)
for error in errors:
print(f" - {error}", file=sys.stderr)
return False
# All checks passed
print("Success: LLM analysis task completed successfully.")
print("- Account llm_analyst_2024 verified")
print(
"- Submission 'LLM Research Summary: GPT Discussions Analysis [2024]' found"
)
print(
f"- Total LLM-related posts analyzed: {extracted_data['Total_LLM_Posts']}"
)
print("- Top 3 posts by upvotes identified and documented")
print(
f"- Deeplearning forum page 2 most discussed post: {extracted_data['Deeplearning_MostDiscussed']}"
)
print("- All data in correct Key: Value format with 12 lines")
return True
except PlaywrightTimeoutError as e:
print(f"Error: Timeout occurred - {str(e)}", file=sys.stderr)
return False
except Exception as e:
print(f"Error: Unexpected error - {str(e)}", file=sys.stderr)
return False
finally:
await browser.close()
def main():
"""
Executes the verification process and exits with a status code.
"""
result = asyncio.run(verify())
sys.exit(0 if result else 1)
if __name__ == "__main__":
main()