LLM Research Summary
Aggregate and analyze LLM research discussions across multiple forums, collect trending topics, compile technical insights, and create comprehensive summary post with community engagement.
Model Ranking
Model | Run Results | Pass@4 | Pass^4 | Avg Time | Avg Turns | Input Tokens | Output Tokens | Total Tokens |
|---|---|---|---|---|---|---|---|---|
Model | Run Results | Pass@4 | Pass^4 | Avg Time | Avg Turns | Input Tokens | Output Tokens | Total Tokens |
kimi-k2-0905 | 3 /4 | 306.9s | 19.0 | 1,016,705 | 3,225 | 1,019,930 | ||
claude-sonnet-4 | 2 /4 | 324.8s | 20.0 | 1,066,641 | 4,538 | 1,071,180 | ||
claude-sonnet-4-high | 2 /4 | 182.2s | 17.3 | 809,609 | 3,997 | 813,606 | ||
claude-sonnet-4-low | 1 /4 | 160.5s | 17.0 | 795,998 | 4,071 | 800,069 | ||
qwen-3-coder-plus | 1 /4 | 394.1s | 22.3 | 2,070,142 | 3,663 | 2,073,805 | ||
claude-opus-4-1 | 0 /1 | - | - | 403.9s | 20.0 | 984,735 | 3,636 | 988,371 |
deepseek-chat | 0 /4 | 312.5s | 19.0 | 857,672 | 2,588 | 860,260 | ||
gemini-2-5-flash | 0 /4 | 165.7s | 23.5 | 3,102,177 | 10,433 | 3,112,610 | ||
gemini-2-5-pro | 0 /4 | 350.8s | 21.8 | 1,336,379 | 9,754 | 1,346,133 | ||
glm-4-5 | 0 /4 | 178.0s | 15.0 | 541,335 | 4,089 | 545,424 | ||
gpt-4-1 | 0 /4 | 79.7s | 12.8 | 455,783 | 1,363 | 457,147 | ||
gpt-4-1-mini | 0 /4 | 316.5s | 28.8 | 3,059,008 | 3,334 | 3,062,341 | ||
gpt-4-1-nano | 0 /4 | 152.7s | 15.0 | 94,271 | 525 | 94,796 | ||
gpt-5-high | 0 /4 | 902.5s | 13.0 | 349,845 | 28,060 | 377,905 | ||
gpt-5-low | 0 /4 | 524.1s | 17.3 | 592,551 | 22,608 | 615,160 | ||
gpt-5-medium | 0 /4 | 463.2s | 16.5 | 648,333 | 23,031 | 671,363 | ||
gpt-5-mini-high | 0 /4 | 381.3s | 24.3 | 2,035,513 | 26,227 | 2,061,740 | ||
gpt-5-mini-low | 0 /4 | 101.3s | 15.3 | 616,035 | 4,454 | 620,489 | ||
gpt-5-mini-medium | 0 /4 | 175.5s | 16.3 | 778,758 | 12,478 | 791,236 | ||
gpt-5-nano-high | 0 /4 | 442.4s | 26.3 | 773,850 | 31,239 | 805,089 | ||
gpt-5-nano-low | 0 /4 | 366.8s | 13.3 | 94,059 | 13,661 | 107,720 | ||
gpt-5-nano-medium | 0 /4 | 309.3s | 20.3 | 351,957 | 19,224 | 371,181 | ||
gpt-oss-120b | 0 /4 | 21.7s | 5.5 | 32,913 | 1,216 | 34,129 | ||
grok-4 | 0 /4 | 150.9s | 13.3 | 447,141 | 5,068 | 452,210 | ||
grok-code-fast-1 | 0 /4 | 60.9s | 14.0 | 490,528 | 4,922 | 495,450 | ||
kimi-k2-0711 | 0 /4 | 235.5s | 20.5 | 859,018 | 2,252 | 861,270 | ||
o3 | 0 /4 | 202.1s | 15.8 | 478,381 | 8,293 | 486,674 | ||
o4-mini | 0 /4 | 382.3s | 12.8 | 356,164 | 19,936 | 376,100 | ||
qwen-3-max | 0 /4 | 97.5s | 14.0 | 493,530 | 1,173 | 494,703 |
Task State
Instruction
I need you to perform a comprehensive analysis of Large Language Model discussions on this forum platform and create a summary post. This analysis will help me understand the community's engagement with LLM topics.
Task Requirements:
-
Register a new account with username 'llm_analyst_2024' and password 'LLMExpert2024!'
-
After successful registration, navigate to the MachineLearning forum and analyze posts about Large Language Models:
- Count all posts on the first page that contain 'GPT', 'ChatGPT', or 'LLM' in their titles
-
Identify the top 3 posts with the highest upvote counts from your LLM-related posts list and record their complete details
-
Navigate to the deeplearning forum and go to page 2:
- Find the post with the most comments on page 2
- Record its exact title and comment count
-
Create a new submission in the MachineLearning forum with:
- Title: "LLM Research Summary: GPT Discussions Analysis [2024]"
- Body text must be EXACTLY these lines without anything (keep the keys as-is, only replace the values after the pipe, follow the markdown format):
- Total_LLM_Posts|FILL_VALUE
- Top1_Title|FILL_VALUE
- Top1_Upvotes|FILL_VALUE
- Top1_Date|FILL_VALUE
- Top2_Title|FILL_VALUE
- Top2_Upvotes|FILL_VALUE
- Top2_Date|FILL_VALUE
- Top3_Title|FILL_VALUE
- Top3_Upvotes|FILL_VALUE
- Top3_Date|FILL_VALUE
- Deeplearning_MostDiscussed|FILL_VALUE
- Deeplearning_Comments|FILL_VALUEVerify
import asyncio
import sys
import re
import os
from pathlib import Path
from playwright.async_api import (
async_playwright,
TimeoutError as PlaywrightTimeoutError,
)
# 从环境变量读取 base_url,默认回退到本地
BASE_URL = os.getenv("WEBARENA_BASE_URL", "http://localhost:9999").rstrip("/")
def parse_key_value_format(text):
"""
Parse the Key|Value format from the submission body.
Handles both pipe (|) and colon (:) separators for compatibility.
"""
data = {}
# Try to parse with pipe separator first (expected format)
lines = text.strip().split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Remove markdown list prefix if present
if line.startswith('- '):
line = line[2:]
elif line.startswith('* '):
line = line[2:]
# Try pipe separator first
if '|' in line:
parts = line.split('|', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
data[key] = value
# Fallback to colon separator for label.txt compatibility
elif ':' in line:
parts = line.split(':', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
data[key] = value
return data
def normalize_text(text):
"""
Normalize text for comparison by handling different quote styles and whitespace.
"""
if not isinstance(text, str):
return str(text)
# Replace various quote styles with standard quotes
text = text.replace(""", "'").replace(""", "'")
text = text.replace('"', '"').replace('"', '"')
# Normalize whitespace
text = " ".join(text.split())
return text.strip()
async def verify() -> bool:
"""
Verifies that the LLM analysis task has been completed correctly.
"""
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
context = await browser.new_context()
page = await context.new_page()
try:
# Navigate to the main page
print("Navigating to forum...", file=sys.stderr)
await page.goto(f"{BASE_URL}/", wait_until="networkidle")
# Check if logged in as llm_analyst_2024
user_button = page.locator('button:has-text("llm_analyst_2024")')
if not await user_button.count():
# Try to login
print("Not logged in, attempting to login...", file=sys.stderr)
await page.click('a:has-text("Log in")')
await page.wait_for_load_state("networkidle")
await page.fill('input[name="_username"]', "llm_analyst_2024")
await page.fill('input[name="_password"]', "LLMExpert2024!")
await page.click('button:has-text("Log in")')
await page.wait_for_load_state("networkidle")
user_button = page.locator('button:has-text("llm_analyst_2024")')
if not await user_button.count():
print("Error: Login failed for llm_analyst_2024", file=sys.stderr)
return False
print("Successfully logged in as llm_analyst_2024", file=sys.stderr)
else:
print("Already logged in as llm_analyst_2024", file=sys.stderr)
# Navigate to MachineLearning forum
print("Navigating to MachineLearning forum...", file=sys.stderr)
await page.goto(
f"{BASE_URL}/f/MachineLearning", wait_until="networkidle"
)
# Look for the submission with our specific title
print(
"Looking for submission 'LLM Research Summary: GPT Discussions Analysis [2024]'...",
file=sys.stderr,
)
post_link = page.locator(
'a:has-text("LLM Research Summary: GPT Discussions Analysis [2024]")'
)
if not await post_link.count():
print(
"Error: Could not find submission with required title",
file=sys.stderr,
)
return False
# Click on the submission to view its content
await post_link.first.click()
await page.wait_for_load_state("networkidle")
# Extract the submission body content
# Try multiple possible selectors for the post body
post_content = None
selectors = [
".submission__body",
".post-body",
".RichText",
'[class*="RichText"]',
'div:has(> p:has-text("Total_LLM_Posts"))',
'div:has-text("Total_LLM_Posts"):has-text("Deeplearning_Comments")',
]
for selector in selectors:
content_element = page.locator(selector)
if await content_element.count():
post_content = await content_element.first.inner_text()
if "Total_LLM_Posts" in post_content:
print(
f"Found submission content using selector: {selector}",
file=sys.stderr,
)
break
if not post_content or "Total_LLM_Posts" not in post_content:
print(
"Error: Could not find submission body with required format",
file=sys.stderr,
)
return False
print("Submission content found, parsing data...", file=sys.stderr)
print(f"Raw content: {post_content[:200]}...", file=sys.stderr)
# Parse the Key: Value format
extracted_data = parse_key_value_format(post_content)
print(f"Extracted data: {extracted_data}", file=sys.stderr)
# Load expected values from label.txt
label_path = Path(__file__).parent / "label.txt"
if label_path.exists():
with open(label_path, "r") as f:
expected_text = f.read().strip()
expected_data = parse_key_value_format(expected_text)
print("Loaded expected values from label.txt", file=sys.stderr)
# Verify all required keys are present
required_keys = [
"Total_LLM_Posts",
"Top1_Title",
"Top1_Upvotes",
"Top1_Date",
"Top2_Title",
"Top2_Upvotes",
"Top2_Date",
"Top3_Title",
"Top3_Upvotes",
"Top3_Date",
"Deeplearning_MostDiscussed",
"Deeplearning_Comments",
]
missing_keys = []
for key in required_keys:
if key not in extracted_data:
missing_keys.append(key)
if missing_keys:
print(
f"Error: Missing required keys: {', '.join(missing_keys)}",
file=sys.stderr,
)
return False
# Validate data format and content
errors = []
# Check Total_LLM_Posts is a number and matches expected
try:
total_posts = int(extracted_data["Total_LLM_Posts"])
if "expected_data" in locals() and "Total_LLM_Posts" in expected_data:
expected_total = int(expected_data["Total_LLM_Posts"])
if total_posts != expected_total:
errors.append(
f"Total_LLM_Posts mismatch: got {total_posts}, expected {expected_total}"
)
elif total_posts < 5: # Based on exploration, should be at least 5
errors.append(f"Total_LLM_Posts seems too low: {total_posts}")
except ValueError:
errors.append(
f"Total_LLM_Posts must be a number, got: {extracted_data['Total_LLM_Posts']}"
)
# If we have expected data, compare against it
if "expected_data" in locals():
# Compare each field
for key in required_keys:
if key in expected_data and key in extracted_data:
expected_val = normalize_text(expected_data[key])
actual_val = normalize_text(extracted_data[key])
# For numeric fields, compare as integers
if (
"Upvotes" in key
or "Comments" in key
or key == "Total_LLM_Posts"
):
try:
expected_int = int(expected_val)
actual_int = int(actual_val)
if expected_int != actual_int:
errors.append(
f"{key} mismatch: got {actual_int}, expected {expected_int}"
)
except ValueError:
errors.append(
f"{key} should be numeric: got '{actual_val}'"
)
else:
# For text fields, compare normalized text
if expected_val != actual_val:
errors.append(
f"{key} mismatch: got '{actual_val}', expected '{expected_val}'"
)
else:
# If no expected data, just do basic validation
for key in required_keys:
if key not in extracted_data:
errors.append(f"Missing required key: {key}")
elif (
not extracted_data[key] or extracted_data[key] == "[FILL_VALUE]"
):
errors.append(f"{key} was not filled in")
# Verify upvotes are in descending order for top 3
try:
top1_votes = int(extracted_data["Top1_Upvotes"])
top2_votes = int(extracted_data["Top2_Upvotes"])
top3_votes = int(extracted_data["Top3_Upvotes"])
if not (top1_votes >= top2_votes >= top3_votes):
errors.append(
f"Top posts should be ordered by upvotes: {top1_votes} >= {top2_votes} >= {top3_votes}"
)
except (ValueError, KeyError):
pass # Already reported above
if errors:
print(
"Error: Validation failed with the following issues:",
file=sys.stderr,
)
for error in errors:
print(f" - {error}", file=sys.stderr)
return False
# All checks passed
print("Success: LLM analysis task completed successfully.")
print("- Account llm_analyst_2024 verified")
print(
"- Submission 'LLM Research Summary: GPT Discussions Analysis [2024]' found"
)
print(
f"- Total LLM-related posts analyzed: {extracted_data['Total_LLM_Posts']}"
)
print("- Top 3 posts by upvotes identified and documented")
print(
f"- Deeplearning forum page 2 most discussed post: {extracted_data['Deeplearning_MostDiscussed']}"
)
print("- All data in correct Key: Value format with 12 lines")
return True
except PlaywrightTimeoutError as e:
print(f"Error: Timeout occurred - {str(e)}", file=sys.stderr)
return False
except Exception as e:
print(f"Error: Unexpected error - {str(e)}", file=sys.stderr)
return False
finally:
await browser.close()
def main():
"""
Executes the verification process and exits with a status code.
"""
result = asyncio.run(verify())
sys.exit(0 if result else 1)
if __name__ == "__main__":
main()