Dataset Comparison
L3
FilesystemVotenet
Map ScanNet object categories to their SUN RGB-D equivalents and calculate detailed object counts for each mapped category.
Created by Lingjun Chen
2025-08-13
Cross ReferencingData ExtractionPattern Analysis
Model Ranking
Click on the dots to view the trajectory of each task run
Task State
Task Initial State Files
Download ZIP package to view the complete file structure
votenet/
├── doc/
│ ├── teaser.jpg
│ └── tips.md
├── models/
│ ├── ap_helper.py
│ ├── backbone_module.py
│ ├── boxnet.py
│ ├── dump_helper.py
│ ├── loss_helper.py
│ ├── loss_helper_boxnet.py
│ ├── proposal_module.py
│ ├── votenet.py
│ └── voting_module.py
├── pointnet2/
│ ├── _ext_src/
│ │ ├── include/
│ │ │ ├── ball_query.h
│ │ │ ├── cuda_utils.h
│ │ │ ├── group_points.h
│ │ │ ├── interpolate.h
│ │ │ ├── sampling.h
│ │ │ └── utils.h
│ │ └── src/
│ │ ├── ball_query.cpp
│ │ ├── ball_query_gpu.cu
│ │ ├── bindings.cpp
│ │ ├── group_points.cpp
│ │ ├── group_points_gpu.cu
│ │ ├── interpolate.cpp
│ │ ├── interpolate_gpu.cu
│ │ ├── sampling.cpp
│ │ └── sampling_gpu.cu
│ ├── pointnet2_modules.py
│ ├── pointnet2_test.py
│ ├── pointnet2_utils.py
│ ├── pytorch_utils.py
│ └── setup.py
├── scannet/
│ ├── meta_data/
│ │ ├── scannet_means.npz
│ │ ├── scannet_train.txt
│ │ ├── scannetv2-labels.combined.tsv
│ │ ├── scannetv2_test.txt
│ │ ├── scannetv2_train.txt
│ │ └── scannetv2_val.txt
│ ├── scans/
│ ├── batch_load_scannet_data.py
│ ├── data_viz.py
│ ├── load_scannet_data.py
│ ├── model_util_scannet.py
│ ├── README.md
│ ├── scannet_detection_dataset.py
│ └── scannet_utils.py
├── sunrgbd/
│ ├── matlab/
│ │ ├── extract_rgbd_data_v1.m
│ │ ├── extract_rgbd_data_v2.m
│ │ └── extract_split.m
│ ├── OFFICIAL_SUNRGBD/
│ ├── sunrgbd_trainval/
│ ├── model_util_sunrgbd.py
│ ├── README.md
│ ├── sunrgbd_data.py
│ ├── sunrgbd_detection_dataset.py
│ └── sunrgbd_utils.py
├── utils/
│ ├── box_util.py
│ ├── eval_det.py
│ ├── metric_util.py
│ ├── nms.py
│ ├── nn_distance.py
│ ├── pc_util.py
│ ├── tf_logger.py
│ └── tf_visualizer.py
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── demo.py
├── eval.py
├── LICENSE
├── README.md
└── train.py
Instruction
Please use FileSystem tools to finish the following task:
Task Description
Analyze the codebase to map ScanNet object categories to SUN RGB-D categories and calculate object counts.
Task Objectives
- Primary Goal: Use SUN RGB-D's 10-category classification system as the target taxonomy
- Mapping Requirement: Map each ScanNet object category (using the "category" field, not "raw_category") to the corresponding SUN RGB-D category
- Calculation: For each SUN RGB-D category, calculate the total count of objects from ScanNet that map to that category (It only counts if the category (not raw category) name are exactly the same(night_stand = nightstand))
- Output: Generate an analysis.txt file in the main directory showing the mapping and counts
Expected Output
Create a file named analysis.txt in the test directory root with the following format:
- Each SUN RGB-D category should be represented as a 2-line block
- Line 1: category name
- Line 2: total count
- Each block should be separated by one empty line
Verify
Python