Birth Of Arvinxu
L3
PlaywrightWeb Search
Search for biographical information about X profile arvin17x across multiple web sources, extract birth year data, verify information accuracy, and compile findings.
Created by Arvin Xu
2025-08-18
Search AggregationData Extraction
Model Ranking
Click on the dots to view the trajectory of each task run
Model | Run Results | Pass@4 | Pass^4 | Avg Time | Avg Turns | Input Tokens | Output Tokens | Total Tokens |
---|---|---|---|---|---|---|---|---|
gpt-5 | 4 /4 | 776.7s | 36.0 | 2,546,290 | 23,530 | 2,569,820 | ||
o3 | 1 /4 | 194.6s | 23.3 | 721,945 | 3,598 | 725,543 | ||
claude-4-1-opus | 0 /1 | - | - | 203.0s | 8.0 | 356,654 | 1,465 | 358,119 |
claude-4-sonnet | 0 /4 | 88.6s | 6.3 | 224,044 | 1,237 | 225,280 | ||
deepseek-chat | 0 /4 | 152.6s | 9.8 | 369,862 | 1,231 | 371,092 | ||
gemini-2-5-pro | 0 /4 | 39.0s | 5.3 | 234,815 | 1,254 | 236,070 | ||
grok-4 | 0 /4 | 302.8s | 20.0 | - | - | - | ||
k2 | 0 /4 | 109.6s | 9.8 | 185,450 | 1,126 | 186,576 | ||
qwen-3-coder | 0 /4 | 69.5s | 7.5 | 283,071 | 895 | 283,965 |
Instruction
Verify
Python
#!/usr/bin/env python3
"""
Verification script for Playwright web search task.
Simple verification that checks if the AI agent found the correct answer.
The expected ground truth answer is configured at the top of the file.
"""
import sys
import json
import os
from pathlib import Path
from typing import Dict, Any
# =============================================================================
# CONFIGURATION
# =============================================================================
# Expected ground truth answer (exact match)
EXPECTED_GROUND_TRUTH = "1995"
# =============================================================================
# MCP RESULT PARSING
# =============================================================================
def get_working_directory() -> Path:
"""Get the working directory where messages.json should be."""
# Priority 1: Use MCP_MESSAGES path if available (most reliable)
messages_path = os.getenv("MCP_MESSAGES")
if messages_path and Path(messages_path).exists():
return Path(messages_path).parent.resolve()
# Priority 2: Use PLAYWRIGHT_WORK_DIR environment variable
work_dir = os.getenv("PLAYWRIGHT_WORK_DIR")
if work_dir:
work_path = Path(work_dir).resolve()
if (work_path / "messages.json").exists():
return work_path
# Priority 3: Check current directory (fallback)
current_dir = Path.cwd()
if (current_dir / "messages.json").exists():
return current_dir
# Priority 4: Default fallback
return Path(".").resolve()
def parse_ai_results(work_dir: Path) -> Dict[str, Any]:
"""Parse the AI agent's results from messages.json"""
messages_file = work_dir / "messages.json"
if not messages_file.exists():
return {"success": False, "error": "No messages.json found"}
try:
with open(messages_file, "r", encoding="utf-8") as f:
messages = json.load(f)
except (json.JSONDecodeError, IOError) as e:
return {"success": False, "error": f"Failed to read messages.json: {e}"}
# Look for expected answer in the AI's responses
found_answer = False
ai_responses = []
for message in messages:
if message.get("role") == "assistant":
content = str(message.get("content", ""))
# Handle both string and list content formats
if isinstance(message.get("content"), list):
content = " ".join(
item.get("text", "") if isinstance(item, dict) else str(item)
for item in message.get("content", [])
)
ai_responses.append(content)
# Exact match (character-for-character, case-sensitive, no trimming)
if content == EXPECTED_GROUND_TRUTH:
found_answer = True
return {
"success": True,
"found_answer": found_answer,
"ai_responses": ai_responses,
"total_responses": len(ai_responses),
}
# =============================================================================
# MAIN VERIFICATION
# =============================================================================
def verify_task() -> bool:
"""Verify the AI agent found the correct answer"""
# Parse AI agent results
work_dir = get_working_directory()
print(f"| Working directory: {work_dir}")
ai_results = parse_ai_results(work_dir)
if not ai_results["success"]:
print(f"| ❌ Could not parse AI results: {ai_results.get('error')}")
return False
if ai_results["found_answer"]:
print(f"| AI agent correctly identified: {EXPECTED_GROUND_TRUTH}")
return True
else:
print(f"| AI agent did not find the correct answer: {EXPECTED_GROUND_TRUTH}")
return False
def main():
"""Main verification function."""
try:
success = verify_task()
sys.exit(0 if success else 1)
except Exception as e:
print(f"\n💥 Verification error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()